
Sensors and Auton
University Liggett School Middle School Robotics

Tony Pan

10/27/2017

Review on
Servos

Servo testServo = hardwareMap.get(Servo.class,

“TestServo");

if (gamepad1.y) {

testServo.setPosition(0);

} else if (gamepad1.x || gamepad1.b) {

testServo.setPosition(0.5);

} else if (gamepad1.a) {

testServo.setPosition(1);

}

Color Sensor

▪ A sensor is a device that lets the Robot Controller get

information about the robot’s environment.

▪ The Modern Robotics Color Sensor detects the color of an

object using reflected light or the color of light from an

external light source. Great for detecting and tracking

colored lines and determining the color of a lit object.

Passive/Active Modes

In Active mode, the internal
LED provides the light source
for detecting the target color.

Best results in Active mode
are obtained when the target

is within about 7cm of the
color sensor.

In Passive mode, the internal
LED is switched off and the
sensor detects the color of
the light from an external

light source such as a colored
LED or lighted device.

Color

▪ HSV: The hue (H) of a color are described by a number that

specifies the position of the corresponding pure color on the

color wheel, as a fraction between 0 and 1. The saturation (S) of a

color describes how white the color is. The value (V) of a color,

also called its lightness, describes how dark the color is.

▪ RGB: Red, green, blue values from 0 (lightest) to 255 (darkest).

▪ The Color Number returned is in the range 0 – 16 as shown this

chart. The sensor also returns values for red, green, blue and

white.

Arrays

▪ Think about matrix, vectors, grids etc.

▪ Maybe simply a box with grids inside it

▪ Ex. int[] arrayName = new int[](size);

▪ float hsvValues[] = {0F,0F,0F};

Device Interface

▪ deviceInterfaceModule DIM = hardwareMap.

deviceInterfaceModule.get(“DeviceInterfaceModule”);

▪ Controls the sensors and gives the output back to the

robot controller

▪ How to check color?

▪ if (colorSensor.blue() > colorSensor.red() &&

colorSensor.blue() > colorSensor.green()) // it’s blue

▪ if (colorSensor.red() > colorSensor.blue() &&

colorSensor.red() > colorSensor.green()) // it’s red

▪ DIM.setLED(1, true); // red on

▪ DIM.settled(0, false); // blue off

In Code

ColorSensor colorSensor = null;

colorSensor =
hardwareMap.get(ColorSensor.class,

"sensor_color");

colorSensor.enableLed(true);

colorSensor.red();

colorSensor.blue();

Try/Catch

▪ To execute code that might throw an exception, you

must enclose it in a try/catch statement.

▪ public void runOpMode() throws InterruptedException

try {

statements; // code that might throw an exception

} catch (ExceptionType name) {

statements; // code to handle the error

}

Hardware Map

▪ This class can be used to define all the specific

hardware for a single robot.

▪ Declare all the variables (motors, servos, sensors)

▪ public class Hardware7140 //7140’s robot (in the

hardware map class)

▪ Hardware7140 robot = new HardwarePushbot(); //using

7140’s robot’s hardware (in the op mode class)

▪ robot.init(hardwareMap); //pass the hardware map in as

a parameter to the hardware class from the op mode

▪ public void init(HardwareMap 7140) //the hardware

map class initializes the robot and returns the initialized

varaibles

Auton

▪ @Autonomous

▪ extends LinearOpMode

public void runOpMode() {

robot.init(hardwareMap);

waitForStart();

// set motor power…

sleep(time in milliseconds);

}

